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ABSTRACT
The paper presents a method to recover exponential accuracy at all points (including at the
discontinuities themselves), from the knowledge of an approximation to the interpolation polyno-
mial (or trigonometrical polynomial). We show that if we are given the collocation point values (or
an highly accurate approximation) at the Gauss or Gauss-Lobatto points, we can reconstruct an
uniform ezponentially convergent approximation to the function f(z) in any sub-interval of analyt-

icity. The proof covers the cases of Fourier, Chebyshev, Legendre, and more general Gegenbauer

collocation methods.
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1 Introduction

We continue our investigation of overcoming the Gibbs phenomenon, i.e., recovering pointwise
exponential accuracy at all points including at the discontinuities themselves, from the knowledge
of a spectral partial sum of a discontinuous but piecewise analytic function. In previous papers [3],
[4], [5] and [6] we have considered the cases of Galerkin approximation, which means that, given
an orthogonal basis {¢x(2)} over [-1, 1] with a weight function w(z), we assume that the first N

Galerkin coefficients

fk = —1-/1 w(z) f(z)or(z)dz, 1<k<N (1.1)
Ck J-1

of a discontinuous but piecewise analytic function f(z), are known. Here ¢; are normalization
constants. A procedure is given in our previous papers to recover uniform exponential accuracy,
in any sub-interval of analyticity of f(z). The Fourier Galerkin case (¢x(z) = €™, w(z) = 1)
with a single discontinuity is analyzed in [3]; wave resolution issues are discussed in [4]; sub-
interval reconstruction suitable for multiple discontinuities are analyzed in [5] for the Fourier case
and the Legendre case (¢x(z) = Li(z), w(z) = 1), and in [6] for the general Gegenbauer case
($4(2) = Cf(2), w(z) = (1 - 2?)73).

The reconstruction procedure analyzed in these papers consists of two steps:

1. Using the given spectral partial sum of the first N terms, to recover the first m ~ N
Gegenbauer expansion coefficients, based on a sub-interval [a,bd] C [~1, 1] in which the
function is assumed analytic, with exponential accuracy. This can be achieved for any
L, function, as long as we choose A in the weight function of Gegenbauer polynomials

to be proportional to N. The error incurred at this stage is called the truncation error.

2. For an analytic function in [a, b], proving the exponential convergence of its Gegenbauer
expansion, when the parameter A in the weight function is proportional to the number
of terms retained in the expansion. The error at this stage is labeled the regularization

error.



In this paper, we will consider the case of collocation. We assume that the point values f(zx;),
where z; are the Gauss or Gauss-Lobatto points of the orthogonal basis {¢x(z)}, of a discontinuous
but piecewise analytic function f(z), are given. Alternatively, we assume that we have an accurate
approximation to the interpolation polynomial based on these points. The objective is to recover
exponentially accurate point values over any subinterval [a,b] of analyticity of f(z). As before,
we will separate the analysis of the error into two parts: truncation error and regularization error.
Truncation error measures the difference between the exact Gegenbauer coefficients with A ~ N,
and those obtained by using the collocation point values. This will be investigated in Section 3.
The regularization error measures the difference between the Gegenbauer expansion using the first
m ~ N Gegenbauer coefficients with A ~ N, and the function itself, in a sub-interval [a, b], in which
the function is assumed analytic. This error is estimated in [5] and we will simply quote the result
in Section 4. The results are summarized in Theorem 4.2. Section 5 contains a numerical example
to illustrate our results. In Section 2 we shall give some useful properties and estimates, including
a useful approximation result.

Throughout this paper, we will use A to denote a generic constant or at most a polynomial
in the growing parameters, as will be indicated in the text. It may not be the same at different

locations.
2 Preliminaries

We first collect some useful results about the Gegenbauer polynomials, to be used later. We rely

heavily on the standardization in Bateman [1].

Definition 2.1. The Gegenbauer polynomial Cj(z), for A > 0, is defined by
2\ A= Ay ar 2\ntA—L
(1-2HCe) = GO g [(1 - 2ty (2.1)
where G(A,n) is given by

(-D"T(A + 1)T(n +2))
27pIT(2A)T(n + A + 1)

G\ n) = (2.2)



for A > 0, by

G(0,n) = 2—_% (2.3)

for A =0and » > 1, and by

G(0,0) = 1. (2.4)
for A = 0, n = 0. Notice that by this standardization, C%(z) is defined by (see [1]):
Coz) = lim —l-C"\(:L') = ZT (z) n > 0; Co(z) =1 (2.5)
n a0t AT n " ’ ! 0 ’

where T,(z) are the Chebyshev polynomials.

a
Under this definition we have, for A > 0,
A1) = F—i{%ﬁ’)\) (2.6)
and
ICa@)l < CM1), -1<z<1 (2.7)
The Gegenbauer polynomials are orthogonal under their weight function (1 — xz)’\'%:
/_11(1 — 2230 2)CNz)dz = bk ) (2.8)
where, for A > 0,
) = w%Cg(l)%f—z\) (2.9)

We will need to use heavily the asymptotics of the Gegenbauer polynomials for large n and \.
For this we need the well-known Stirling’s formula:

(2r)22t 56" <T(z + 1) < (2n)ia"Fhe"e, 2> 1 (2.10)

Lemma 2.2. There exists a constant 4 independent of A and n such that

1 1

A2 A2
-1 CM1)<h < A

cX1) (2.11)

The proof follows from (2.9) and the Stirling’s formula (2.10).

3



Let us assume that the function f(z) is analytic in [—1, 1] and satisfies the following

Assumption 2.3. There exists a constant p > 1 and C(p) such that, for every k > 0,

d* k!
@) < Cloyg (2.12)

max
-1<z<1

o

This is a standard assumption for analytic functions. p is the distance from [—1, 1] to the nearest
singularity of f(z) in the complex plane (see for example [7]). For such function f(z) we have the
following
Lemma 2.4. If f(z) is an analytic function satisfying the Assumption 2.3, then for any integer m

such that 0 < m < A — , we have

e | T [(1-s2P b £ )]‘ < C(p)T (,\+ %) (2 + %)m. (2.13)
Proof:
o (1= 2P E )] = (dd"; 1) (- -4
m (m— k) 2’%! PeA-mT(A+3) P
< C(p) Z < kl(m — k)! kT (/\ P %) o= h) 1-z?)
U m—k 2RTO-ENT (A+3)  rea—k)
< W) ,;, Bim—k) pm=*p (A —k+1)T(@A-k) KTEA-F)
. 1\ & m! 1\™k
S Clp2 F(A+§),§)k!l‘()\—k+%) (%)
m—k
< Clp )2mF<z\+ >Zk, (o k),(l>

= C(prT (A + ‘12) (2 + p)

where we have used the analyticity assumption (2.12), and the formulas (2.1)-(2.2), for the second
inequality. We have also used (2.6)-(2.7), and the fact that (1 —mz)’\_k_% < 1because A\—~k—1 >0,
for the third inequality. In the fourth inequality we have used the fact that I’ (/\ -k+ %) > (m—k)!

because/\——k+%2m—k+l.



Finally, we would need to quote some approximation results for the interpolation polynomials.
If the point values f(z;) of the function f(z) are known at the N Gauss or Gauss-Lobatto points

{z:} of the basis functions {¢(z)}, we will denote the unique interpolation polynomial by

N
Inf(z)=)_ fedr(z) (2.14)
k=1

which satisfies
Inf(zi) = f(z), i=1,2,...,N (2.15)
We then have the following error estimates for the interpolation polynomial Iy f(z):
Lemma 2.5. If f(z) has m continuous derivatives in [—1, 1], then the interpolation polynomial
In f(z) defined by (2.14), (2.15), where the basis functions {¢x(z)} are either trigonometric poly-
nomials €’*™% or the Gegenbauer polynomials C} with p > —-;- (which includes, for example, the

Chebyshev case p = 0 and the Legendre case y = %), satisfies the following estimate:

A

1f = Infllg, < 55 l1F™ L, (2.16)
where the weighted L? norm is defined by
1
113 = [ w(@)lf(2)Pds (2.17)

and A is a constant independent of N and m.

Proof: The proof of this Lemma can be found in [8] for the trigonometric polynomial case, and
in [2] (Theorem 6.6.1, first line of formula (6.6.3), for which the only restriction about the weight
corresponds to our yu > —%) for the Gegenbauer polynomial case. Notice that in both situations

the constant A is actually independent of m, although the authors did not explicitly point this out.

a

3 Truncation Error

Consider an Ly function f(z) defined in [—1,1]. We assume that the point values f(z;) at the N

Gauss or Gauss-Lobatto points (i.e., the zeros of ¢n41(z), or the zeros of j‘i;cfw(x) plus the two
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boundary points +1), are given. Here, the orthogonal basis {¢x(z)} is either the trigonometric
polynomials e**"*, or the Gegenbauer polynomials Cj(z) with u > ——%.
We are interested in approximating the Gegenbauer expansion of f(z), with A ~ N, based on

a sub-interval [a,b] C [—1, 1] of analyticity. We start by introducing the local variable £:

Definition 3.1. The local variable £ is defined by

(=b@)=—") z=a()=c+? (3.1)
where
e:b;a’ 6:b-+2-a (3.2)
Thus whena <z <b, -1 <E€< 1.
a

We assume that the function f(z)is analytic in this sub-interval [a, b] satisfying the Assumption
2.3:

C(p) (33)

a<:l:<b dz k(z)
for any k > 0, with some p > 1.
The function f(z) has a Gegenbauer expansion in the sub-interval [a,b], with A ~ N. With ¢,

€ and § defined in (3.1)-(3.2), we have

fle€+6) = Zf’\(l)cz (€, -1<¢€<1 (3.4)

where the Gegenbauer coefficients fA({) are defined by

PO = g3 [ 0= @) HaN O + e (35)

Our goal in this section is to find a good approximation to the first m ~ N Gegenbauer
coefficients f}(I) in (3.5).
Based on the known point values f(z;), we define not the usual interpolation polynomial Iy f(z)
in (2.14)-(2.15), but
on(z) = I (a- ) (2), (3.6)
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where the function a(z) is defined by

ofz) = { (1- @))%, a<ae <y, 3.7)

0, otherwise.

with £(z) defined by (3.1). This works for the case fil @dz < 00, where w(z) is the weight
function of the basis {¢«}. Most commonly used bases belong to this class, for example the Fourier
case where w(z) = 1 and the Gegenbauer case where w(z) = (1 - z2)“_%, when p < 3. Otherwise,

if the basis {¢x} consists of the Gegenbauer polynomials C}(z) with s > 2, we should choose

avA—L gL

a(z) = (1= &) 2 /(1 -2%)27 5, an_<_.b, (3.8)
0, otherwise.

Intuitively, the function gn(z) has about A ~ N continuous derivatives, hence would produce

nice error estimates.

Our candidate for approximating the Gegenbauer coefficients (1) in (3.5) is:

. 1t
2= 55 [ anteE+ 610N @) (3.9)
if (3.7) is used to define a(z), and is
A 1 1 g 8_L A
80 = gz [ (1= =(©5 Hon(ee + 6)CNE)de (3.10)

if (3.8) is used to define a(z).

How well do g (1) approximate f*({)? To answer this question we define

Definition 3.2. The truncation error is defined by

TE(QA,m,N,e)= max | > (fA) - gl m)cie) (3.11)
== i=0

where fA(1) are defined by (3.5) and §)(I) are defined by (3.9).

The truncation error is the measure of the distance between the true Gegenbauer expansion in
the interval [a,b] and its approximation based on the collocation point values of f(z) in [—1,1].

Using the result of the previous section, we have the following estimate for the truncation error:



Lemma 3.3. The truncation error can be estimated by

m(m + A (A +1) T(m + 2) [l (2 + l)]A (3.12)

TE(A,m,N,e) < A
( ) VAmIT(2A) N34 p

€

Proof: We shall just prove the case when (3.7) and (3.9) are used. For this case we have:

TE(,m,Nye) < iu‘*(z)—g&(mcﬁ(l)

< SED|[ [a- et +0) - ontes+ )] o
< f:(c' W)’ L[ o) (o) - on(o) d
=
<3 ey ,EI”) ([ wie)lato) s - antoPts)' ([ shsatr)’
£
L[ o)) 3 (o)

Am(m+A)1‘ (r+1) F(T+ 2)) [l (2 l)]x
VAmIT(2A)NA~2 € p

where we have used (2.7) for the first inequality; the definitions of f2({) and §(!), in (3.5) and (3.9),
for the second inequality; the definition of a(z) in (3.7) for the third inequality; Cauchy-Schwartz
inequality for the fourth inequality; the approximation result (2.16) for the fifth inequality, with
[A — 1] denoting the greatest integer < A — §; (2.13) for the sixth inequality; and (2.6) and (2.11)
for the last inequality.

The case when (3.8) and (3.10) are used instead of (3.7) and (3.9) can be proven in a similar
fashion. We only need to notice that the function (%(I—I,Lz) i is always analytic in a < z < b,

hence can be combined with f(z) in the analysis. This accounts for the extra factor N~% in the

denominator.



We are now ready for the main theorem of this section:

Theorem 3.4. Let the truncation error be defined in (3.11). Let A = aeN and m = BeN with

0<a,3<1, then

(B+2a)f*2 /1 1o\ W
TE(aeN,BeN,N,¢e) < A (W . (§ + 5) ) (3.13)

Stp . .
where A grows at most as Nz . [ = 2e
g n particular, if o = 8 < 7—727 1+ L)’ then

TE(aeN,aeN,N,¢) < AgV (3.14)
where
27a 1\1¢
= |— — 1 .
7 [ 2e (1 * p)] < (3.15)

Proof: The theorem follows from Lemma 3.3 and the Stirling’s formula (2.10).

We now make two remarks:

Remark 3.5. Unlike in the Galerkin case [3], [5] and [6], where for the purpose of truncation
error being exponentially small we only need to assume that the function f(z) is in L, here for
the collocation case we need to assume that the function f(z) is actually analytic in the relevant

sub-interval [a, b].

a

Remark 3.6. We would like to point out that the collocation procedure (3.6), where we collocate
not the function f(z) but its product with a weight (1 —xz)’\';', is somehow nonstandard. Another,
probably more natural, procedure of collocation, is to interpolate f(z) with Iy f(z) and then define

the approximate Gegenbauer coefficients §(!) by
R 1 -1
320 = 53 [ (-1 FIvs(ee + 5)CH e, (3.16)
.

instead of (3.9). Unfortunately, we have been unable to prove that the truncation error is expo-

nentially small for (3.16). In fact it can be shown that for some cases the aliasing error reduces
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the accuracy. However numerical experiments in Section 5 seem to indicate that both procedures

produce similarly good results.

4 Regularization Error and the Main Theorem

The second part of the error, which is called the regularization error and is caused by using a
finite Gegenbauer expansion based on a sub-interval [a,b] C [~1, 1], to approximate a function f(z)
which is assumed analytic in this sub-interval, has been studied in [5]. We will thus just quote the
result.

We again assume that f(z) is an analytic function on [a, b] satisfying the Assumption 2.3, see
(3.3).

Let us consider the Gegenbauer partial sum of the first m terms for the function f(e + 8):

Pee) =3 POcke) (4.1)
{=0

with £, € and 6 defined by (3.1) and (3.2), and the Gegenbauer coefficients f2(1), based on [a,b],
defined by (3.5).

The regularization error in the maximum norm is defined by:
REQ\m, 0 = _max |f(c€+ )= 3 POCNE) (42)
-= =0

We have the following result for the estimation of the regularization error, when A ~ m [5]:
Theorem 4.1. Assume A = ym where v is a positive constant. If f(z) is analytic in [a,b] C [-1,1]
satisfying the Assumption 2.3 in (3.3), then the regularization error defined in (4.2) can be bounded
by

RE(ym,m,€) < Ag™ (4.3)

where ¢ is given by

(1 + 2y)1+%
g = (1+27) (4.4)
p21+2'r7’v(1 + )1ty
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which is always less than 1. In particular, if ¥ = 1 and m = feN where B is a positive constant,

then
RE(BeN,BeN,€) < AqNV (4.5)
with
27¢\7
a

We can now combine the estimates for truncation errors and regularization errors to obtain the

following main theorem of this paper:

Theorem 4.2. (Removal of the(Gibbs Phenomenon for the collocation case).

Consider a L; function f(z) on [-1,1], which is analytic in a sub-interval [a,b] C [-1,1] and
satisfies the Assumption 2.3 in (3.3). Assume that the point values f(z;) at the N Gauss or Gauss-
Lobatto points of {¢x(x)}, are given. Here {¢y(z)} is either the trigonometric polynomials e**™* or
the Gegenbauer polynomials C}/(z) for y > —%. Let (1), 0 < I < m be the Gegenbauer expansion
coefficients, defined in (3.9) or (3.10), based on the sub-interval [a, b], of the collocation polynomial

gn(z) defined in (3.6). Then for A = m = BeN with 3 < ﬂl%:;, we have
2p

max <A(N +qd) (4.7)

-1<€<1

278 1\17 (27e)ﬂ
- [£2 — = (== 1
T [26 (1+2p)] <h e 325) <

5
and A grows at most as N3

Fe+6) = 3 g OCAE)
{=0

where

Proof: Just combine the results of Theorems 3.4 and 4.1.

We remark that no attempt has been made to optimize the parameters.
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5 Numerical Results

In this section we give a numerical example to illustrate our result. We will test both the Fourier

and the Chebyshev cases.

Example 5.1. We take the following function

J)= { (S]l,n(COS(z)), lojttherw(;sf r=t (5-1)
and try to recover pointwise values of f(z) for a < z < b. This function is also used in [6]. In order
to see the effect of relative locations of the sub-interval, for the Chebyshev case we will consider
two situations [a,b] = [—0.5,0.5] and [a,b] = [0, 1]. For the Fourier case we will only consider the
case [a,b] = [~0.5,0.5] because of periodicity.

We first consider the Fourier case. We assume that the point values f(z;), for the 2N +1 equally

spaced points:
21
Ty = ——» —N<1<N, 5‘2
9N + 1 Sts (5.2)
are given. Two collocation procedures are tested. Procedure A, which is the procedure proven in

Section 3 to be exponentially accurate, is to interpolate a(z)f(z) as in (3.6) and (3.7), and then

build the approximating Gegenbauer coefficients g2(1) by (3.9), finally use

m

g(z) = ga?(l)cl*(s) (5.3)
as our approximation to f(z) in [a,b]. We also test the more natural collocation Procedure B,
for which we interpolate f(z) as in (2.14)-(2.15), and then build the approximating Gegenbauer
coefficients §(!) by using (3.16), finally using (5.3) to approximate f(z) in {a,b].

For the Fourier method, since the collocation points are equally spaced, we also have the choice
to use all the collocation points in [—1,1] to build the approximation in [a,b] (referred to as global-
local); or use just the collocation points inside [a, b], with suitable scaling to expand [a, b] to [-1,1]
(referred to as local-local).

We shall use the parameters

m = 0.2¢N, A =0.4eN (5.4)
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where 2NV + 1 is the total number of collocation points in the full interval [—1,1]. This choice is also
used in [6] (with the right scaling). We will use (5.4) for all the test cases of Fourier collocation.
No attempt has been made to optimize these parameters for each individual case.

In Fig. 1 we show the errors, in a logarithm scale, for N = 10, 20, 40 and 80, for the Procedure
A (global-local at left, local-local at right). In Fig. 2 we show similar errors for the Procedure
B. We can clearly see that both Procedure A and Procedure B produce similarly good results.
Also, it seems that global-local and local-local are producing similar errors for the same choice of
A and m. Considering that the effective N (the number of collocation points) is smaller for the
local-local case, hence round off errors should also be smaller, it seems that local-local should be
used if possible (see also the discussions in [9]). However, there are situations (for example when
we are solving a PDE and Iy f is obtained from the time evolution) where the point values f(=zs)
may not be accurate, however the interpolation polynomial /y f (which may interpolates f(z) at

some other points than z;) is accurate. In such situations globai-local is more appropriate.

Fourier, Global-Local, Collocate f*weight Fourier, local-local, collocate f*weight
10° 10

o N=10
10?
W

N=10
10?
o W o
10° W 10° M
10* 104
N=4Q

10"

10° N=40, 100
107 107
10* 10
10° 100
e N=80 b N=80
10" 10
10" 10"
0" 10
1o 0.4 62 0.0 02 04 o0e o -0.4 -0‘,2 0.0 0f2 04 08
Fig. 1: Errors in log scale, f(x) defined by (5.1). [a,b] = [-0.5,0.5]. Fourier collocation with

Procedure A, namely interpolating f(z) * a(z) with a(z) defined by (3.7). A = 0.4¢N and m =

0.2¢N, N = 10,20,40,80. Left: global-local; Right: local-local.
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Fnurier, Global-Local, Collocate f Fourier, local-local, collocate f

0° 10°
10!

N=10 " =
10* W e W
10° N=20 10° N=20
[Lad 10
W

10*

we 10 N=4
10’ 107
10* 10*
10° 10*
10 10°
N=80 . N=80
10 10
w" 0"
0" 109
'o-u A 1 L s 'GM A L L Il 1 N
04 0.2 00 02 o4 0.8 04 02 0.0 0.2 04 0.

Fig. 2: Errors in log scale, f(z) defined by (5.1). [a,b] = [-0.5,0.5]. Fourier collocation with
Procedure B, namely interpolating f(z) only. A = 0.4¢N and m = 0.2¢N, N = 10,20,40,80. Left:

global-local; Right: local-local.

Next we consider the Chebyshev case. We assume that the point values f(z;), at the N +1
Gauss-Lobatto points

T

x; = cos (—]V) , 0<i<N, (5.5)

are given. We again test both Procedure A and Procedure B, now for the middle interval [a,b] =
[—0.5,0.5] as well as for the boundary interval [a, ] = [0, 1]. The choice of A and m are the same
as in [6]:

m = 0.1eN, A =0.2¢eN (5.6)
This is also the same as (5.4) for the Fourier case, considering that now the number of collocation
points is N + 1 instead of 2NV + 1.

In Fig. 3 we show the errors, in a logarithm scale, for N = 20, 40, 80 and 160, for the
Procedure A ([a,b] = [~0.5,0.5] at left, [a,b] = [0,1] at right). In Fig. 4 we show similar errors
for the Procedure B. We can again see that both procedure A and Procedure B produce similarly
good results. Also, these errors are comparable with those obtained in [6] where Galerkin instead

of collocation is used.
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Chebyshav, middle interval, collocate f*weight
10°

10

10°

10°

oo N=160

10"

10"

10"

‘°~" I s L i
0.4 0.2 0.0 0.2 04 (Y]

Chebyshev, boundary interval, coliocate f*weight
10°

10" N=20
10? N=
10°

N=160

L 1
0.0 02 04 08 08 e

Fig. 3: Errors in log scale, f(z) defined by (5.1). Chebyshev collocation with Procedure A, namely
interpolating f(z)+a(z) with a(z) defined by (3.7). A = 0.2¢N and m = 0.1eN, N = 20, 40, 80, 160.

Left: [a,b] = [-0.5,0.5]; Right: [d,b] = [0, 1].

Chebyshev, middle interval, collocate f

1°

10 N=20
10°

o W
10*

1w N=
1w’

100

10°

e N=16
10"

to"

10°

'U“ A

04 02 00 0.2 0.4

0s

Chebyshev, boundary interval, collocate f
10°

N=160

00 02 04 oe 0s 10

Fig. 4: Errors in log scale, f(z) defined by (5.1). Chebyshev collocation with Procedure B, namely

interpolating f(z) only. A = 0.2¢N and m = 0.1¢N, N = 20,40,80,160. Left: [a,b] = [-0.5,0.5];

Right: [a,b] = [0, 1].

6 Concluding Remarks

We have proven the exponential convergence in the maximum norm, of a reconstruction procedure
using Gegenbauer series based on C}}(z) with large A, for any L, function in any sub-interval [a, b]

in which the function is analytic, if we are given the collocation point values of the function at the
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Gauss or Gauss-Lobatto points. The proof covers Fourier, Chebyshev, Legendre and more general

Gegenbauer collocation methods. Numerical examples are also given.
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